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Radical cyclization is a highly versatile method for
forming C-C bonds.2 There has been growing interest
in the use of a silicon-containing tether for intramolecular
radical cyclization reactions,3 which are very useful for
the regio- and stereoselective introduction of a carbon
substituent based on a temporary silicon connection. We
report here an efficient method for introducing a 2-hy-
droxyethyl group via a radical cyclization reaction with
a silicon-containing tether. During this study, we identi-
fied a novel ring-enlargement reaction of (3-oxa-2-sila-
cyclopentyl)methyl radicals into 4-oxa-3-silacyclohexyl
radicals.
Over the past few years, we have studied antisense

oligonucleotides with modified nucleoside units.4 This
work has required a 2′-deoxy-4′-R-(2-hydroxyethyl)ad-
enosine derivative, such as 1 (eq 4), as a novel, modified
nucleoside unit to be incorporated into oligonucleotides.

Although several methods for preparing 4′-branched
nucleosides have been reported,5 these methods are not
stereoselective and only limited types of carbon substit-
uents can be introduced. Therefore, we explored an
efficient method for introducing a 2-hydroxyethyl group
stereoselectively via a radical cyclization reaction using
a silicon-containing tether bearing a radical acceptor. Our
synthetic plan is outlined in eq 1. Halohydrins or
R-(phenylseleno)alkanols are converted to the corre-
sponding vinylsilyl ethers (I). If radical intermediate II,
generated from I, is cyclized to 6-endo-product III,
stereoselective introduction of a 2-hydroxyethyl group at
the â-position of the hydroxyl can be achieved, after an
oxidative ring-cleavage reaction.6

We investigated the reaction with the diphenyl- and
dimethylvinylsilyl ethers 3a and 3b, prepared from
commercially available (()-trans-2-bromo-1-indanol (2).7
Radical reactions were performed with Bu3SnH and
either AIBN or Et3B in benzene, followed by Tamao
oxidation,6 to give a mixture of diols 6 and 7,8 and the
results are summarized in Table 1.9 First, a mixture of
Bu3SnH (1.1 equiv) and AIBN in benzene was added
slowly over 4 h to a solution of 3a in benzene (0.01 M)
under reflux, to give the desired 2-hydroxyethyl deriva-
tive 6 via 6-endo cyclization product 4a, as a major
product, along with 7 via 5-exo cyclization product 5a
(entry 1; 71%, 6:7 ) 6:1). The selectivity for the forma-
tion of 6 increased significantly when a lower concentra-
tion of Bu3SnH was employed (entry 2; 72%, 6:7 ) 15:1).
Interestingly, when the reaction was performed at room
temperature, the regioselectivity was almost completely
reversed to give 7 preferentially (entry 3; 91%, 6:7 )
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Table 1. Synthesis of 6 and 7 via Radical Cyclization
Reaction of 3a or 3ba

entry substrate methodb temp, °C
% yield
(6 + 7) ratiod (6:7)

1 3a A 80 71c 6:1
2 3a B 80 72d 15:1
3 3a C 26 91d 1:11
4 3a D 80 84d 1:17
5 3b A 80 70d 2.8:1
6 3b C 26 72d 1:23
7 3b D 80 81d 1:31
a Compounds 6 and 7 were obtained after treating the crude

reaction mixture of the radical reaction under Tamao oxidation
conditions. b A: To a solution of substrate (0.01 M) in benzene was
added a mixture of Bu3SnH (1.1 equiv) and AIBN (0.6 equiv) in
benzene slowly over 4 h. B: To a solution of substrate (0.002 M)
in benzene was added a mixture of Bu3SnH (1.1 equiv) and AIBN
(0.6 equiv) in benzene slowly over 7 h. C: To a solution of substrate
(0.01 M) in benzene were simultaneously added a solution of
Bu3SnH (1.1 equiv) in benzene and a solution of Et3B (0.6 equiv)
in benzene over 4 h. D: To a mixture of substrate (0.01M) and
Bu3SnH (3.0 equiv) in benzene was added AIBN (0.6 equiv) in
benzene over 2 h. c Isolated yield. d Determined by HPLC.
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1:11). Furthermore, the radical reaction of 3a in the
presence of excess of Bu3SnH at 80 °C also gave 7 with
high selectivity (entry 4; 84%, 6:7 ) 1:17). Similar results
were obtained when dimethylvinylsilyl derivative 3bwas
used as a substrate (entry 5-7). These results suggest
that the formation of the 6-endo product 4 may not be
kinetic but thermodynamic, since the ratio of the endo
and exo products should be independent of the concentra-
tion of Bu3SnH if the reaction is controlled kinetically.
These results conflict with well-known findings (Bald-
win-Beckwith rule) that the cyclization reactions of
hexenyl radicals and their equivalents are controlled
kinetically to give 5-exo cyclization products preferably
over 6-endo cyclization products.10 Two pathways may
explain the selective formation of 6-endo cyclization
product 4: (1) the cyclization reaction is reversible, or
(2) 5-exo cyclized radical B, which is initially formed, is
rearranged to give C (eq 3). However, it is unlikely that
the cyclization is reversible, since reversible radical
cyclizations of hexenyl radical or their equivalents have
been observed only when radical centers are attached to
radical-stabilizing groups, such as carbonyl groups.11

To examine the reaction mechanism, the reaction was
performed with Bu3SnD under the same conditions as
for entry 1 (at 80 °C). After Tamao oxidation, it could
be shown by 1H NMR spectrum that in product 9 only
the protons â to the primary hydroxyl were exclusively
replaced by deuterium.12 On the other hand, product 11,
which was produced via a radical reaction as shown for
entry 3 (at 26 °C), was deuterated exclusively at the
methyl group.12 These results suggest that this cycliza-

tion would be irreversible and that the 5-exo cyclized
radical B would be formed first and is mainly trapped
when the concentration of Bu3SnH(D) is high enough or
the reaction is done at room temperature; under a low
Bu3SnH(D) concentration at a higher reaction tempera-
ture, radical B is rearranged into the ring-enlarged
radical C,13 which is then trapped with Bu3SnH(D) (eq
3). To the best of our knowledge, such a ring-enlarging
1,2-radical rearrangement of â-silyl carbon-centered radi-
cals has not been previously reported.14-17

This reaction was applied to the stereoselective syn-
thesis of our target nucleoside unit 1. A known 4′-
phenylseleno derivative of 2′-deoxyadenosine 1218 was
converted to the 3′-O-vinylsilyl derivative 13. When 13
was treated under the conditions similar to those for
entry 2 in Table 1, 4′-R-hydroxyethyl nucleoside 119 was
obtained successfully in 72% yield. Thus, this radical
reaction with a vinylsily tether may be applicable to a
variety of halohydrins and related compounds for intro-
ducing a hydroxyethyl group at the â-position of the
hydroxyl with a cis-configuration.
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